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LASER WAKEFIELD ACCELERATION AND
! RELATIVISTIC OPTICAL GUIDING

Introduction

It has been suggested that the next generation of high energy linear
electron accelerators utilize the extremely high gradients associated with
plasma waves. Excitation of plasma waves having gradients as high as
several tens of GeV/m can be accomplished in a number cf iclated ways. The
plasma based acceleration schemes which have received the most attention
are the plasma beat wave accelerator1 (PBWA) and the plasma wakefield
accelerator2 (PWFA).

The purpose of this report is to propose a laser plasma electron
acceleration scheme3 which utilizes a relativistic optical guiding
mechanism. Relativistic optical guidingé’5 may allow a sufficiently high
pover laser pulse to propagate long distances within a plasma. The
principle of this optically guided laser wakefield accelerator (LWFA) is
that a short (TL ~ 2n/wp ~ 1 picosec), high power (P > 1015 W), single
frequency laser pulse could propagate long distances in a plasma and
produce accelerating wakefields in a manner analogous to that in the PWFA
(see Fig. 1). 1In the LWFA, however, the plasma responds to the
ponderomotive forces of the laser pulse as opposed to the self-fields of
the electron beam as in the PWFA. 1In addition, in the LWFA the plasma wave
is not resonantly excited as it is in the PBWA. Therefore, the plasma
density in the LWFA concept does not have to be finely adjusted to achieve
large amplitude accelerating fields. The idea of generating a plasma wave
using a single frequency, short pulse laser was suggested by Tajima and
Dawson,1 but apparently was not pursued. Mote detailed consideration of
the laser propagation issues, along with recent advances in laser
technology, indicate that the single frequency, short pulse LWFA togethel
with relativistic optical guiding may have advancages over the PBWA and

PWFA schemes.

Manuscript approved July 6. 1988,




In the PBWA the plasma wave is excited by the beating of two
relatively low powver, long pulse laser beams having a frequency difference
equal to the plasma frequency. The beat (ponderomotive) wave resonantly
drives the plasma wave io large amplitudes. In the PWFA concept, a low
energy, high current relativistic electron beam (driver) having an
appropriate current profile travels through a plasma leaving behind a large
amplitude plasma wave (wakefield). The wakefield accelerates a second low
current, high energy relativistic electron beam. A necessary criteria for
successful operation of either the PBWA or the PWFA is that the driver,
i.e., radiation or electron beam, must be capable of propagating a
sufficiently long distance within the plasma.

Both the PBWA and the PWFA concepts have a number of unresolved
issues. In the PBWA, these include fine tuning of the laser frequencies
and plasma density to within a fraction of a percent to allow for resonant
growth of the plasma wavc.6 Also the laser beams must propagate large
distances within the plasma, avoiding i) diffraction, ii) laser-plasma
instabilities, iii) phase detuning between the plasma waves and the
accelerated electrons, as well as iv) energy depletion of the driving laser
beams.7 The problems regarding the PWFA involve the technology of
producing a high current driving beam with a slow rise time and a very
rapid fall time,8 of the order of picoseconds, as well as the stable
propagation of such a beam over large distances within the plasma.
Multiple acceleration stages, all sequentially phase synchronized, have
been proposed to overcome the propagation distance limitation in both the
PBWA and PWFA. Multi-staging appears to be extremely difficult from a

practical point of view.




Uptical Guiding

The need for optical guiding in the LWFA becomes apparent when the
varicus limitations placed on the acceleration distance are considered.
One limitation on the acceleration distance is the diffraction length,
Ld, which characterizes the distance over which the laser beam spreads
transversely. In the absence of some form of optical guiding, tnc
diffraction length is given by the vacuum Rayleigh length, Ld = nri/x,
vhere . is the laser spot size and A is the wavelength. Another
limitation or the acceleration length is the phase detuning distance,l’7
Lt = 2yixp = 2(1+x§/4ri)‘1(xp/x)2xp, wvhere Yiz - (1—v§/c2), vg is the group
velocity of the laser pulse and Ap is the plasma wavelength. The phase
detuning length is the distance over which an ultra relativistic electron
outruns the wakefield of the radiation pulse and no longer gains energy.
In addition to Ld and Lt there is also the laser depletion length,9

2 2

- - , 2,.2 .
Lp s ELCL/EZ = CL(CL/A) /aLo’ where EL

the laser pulse length, Ez is the axial wake electric field and al, is the

is the laser electric field, CL is

normalized vector potential amplitude of the radiation fiela,

2 : . . .
Ao = |e|ALO/(m0c ). VWhen the pulse travels a distance Lp, the energy in
the trailing plasma wakefield becomes comparable to the laser pulse energy.

Typical values for L ,, L, and Lp are ~ 1 m, ~ 100 m and ~ 1000 m

d’ "t

respectively. 1In obtaining these estimates the fallowing parameters were

used: A ~ 1 um, a

Lo

~ 0.5 and CL -y Xp ~ 0.5 mm. The primary

limitation on the acceleration distance is due to diffraction, Ld'
Clearly, some form of optical guiding within the plasma is necessary to
avoid the need for multi-stage acceleration.

The optical guiding mechanism which may be appropriate for the

intense, short laser pulse in the LWFA is that of relativistic guiding. ’

Physically, relativistic guiding results from the quiver motion of the




plasma electrons in the radiation field, vq = CaL/YL’ vhere Yi(r) =

(1+a§(r))1/2. This gives an index of refracticn n(r) =

(1—(wio/w2)/yl(r))1/2, vhere wpo is the ambient electron plasma frequency
and w is the laser frequency. If the radiation beam is peaked on axis,

then 9n/3r < 0, which is a necessary requirement for refractive guiding to
occur. Relativistic optical guiding occurs on a fast time scale of order

-1 1

w_l; hence, it can affect short pulse radiation, w = << ¢ /e < w; .

Using the ray equations from geometric optics, it is possible to
derive an envelope equation5 for the evolution of the normalized spot size

X = rL/(a ) of the radiation beam, where r is the initial spot size.

Lo'Lo

The envelope equation is of the form of a particle moving in an effective

Lo

potential, dzx/dt2 = -V0 aV/3x. The effective potential V(x) is given
by 3V/8x = - x 2 + l6ax(g(x) - 2 In(g(x)/2+1)], where

2 2 2 .2 .
Vo = (2c¢ /(erOaLO)) , @ = (wpoaLolLo

Analysis5 indicates that the effective potential contains a minimum

/(4c))?, and g(x) - (Lex 52

1.
provided « > 1, thus allowing for matched heam (constant spot size)
solutions. Physically, a« can be written, in terms of the laser powver P, as
o = P/Pcr, where PCr = 17(w/wp)2 GVW is the critical power threshold for
relativistic optical guiding. The high power levels needed for
relativistic optical guiding in plasmas are consistent with the intense
laser pulses needed in the LWFA.

Two points should be mentioned with regard to the propagation of

finite length pulses of duration ( /c < wbl. The first is that

L
relativistic optical guiding may also lead to "pulse clipping". That is,
the front and back regions of the pulse where P < P(‘I will not be guided
but instead will diffract away, leaving a “hoiilcued pulse. Only the

central region of the pulse, where P > P(r, will propagate. The second

point concerns longitudinal dispersive spreading. It can be shown that




after propagating a detuning length Lt’ the intrinsic frequency spread of
the beam Ow causes the pulse to spread by the amount AQL = 2(Am/w)xp.

Since [Aw/w| << 1, longitudinal dispersive spreading should not be a

h problem.

Acceleration Mechanism

In the relativistically guided LWFA concept the short pulse, high
power laser beam provides both a radial and axial ponderomotive force on
the plasma electrons. The radial ponderomotive force expels electrons
radially outward while the front (back) of the laser pulse exerts a forward
(backward) force on the electrons. In this sense, the laser pulse acts
approximately like a negatively charged macro particle propagating through
the plasma (see Fig. 1). As the plasma electrons flow around the laser
pulse, large amplitude plasma waves are generated.

The ponderomotive force, exerted by the laser pulse on the plasma,

moves at the pulse’s group velocity and is given by F

Foond = |e|V®L(r,7.t),

whele the ponderomotive potential is 8 = —moczai/(zlel). Note that the
axial ponderomotive force from the laser pulse cannot be used directly to
accelerate electronc to high energies. The ponderomotive force on the
accelerated electrons is smaller than that on the plasma electrons by the
factor 1/v, where y is the relativistic factor associated with the

accelerated electrons. The laser pulse must first excite a plasma wave

which, in turn, can be used for acceleration. In this analysis the laser

beam is assumed to be circularly polarized, although a linearly polavized
laser, apart from generating harmonics, would have been equally

satisfactory. 1




The wave equation for the plasma response or wakefield is

3°E 38J
2 1__ =~ _4n_">p
VE - T2 20 An[eIVSnp, (L

wvhere Sip and 8np are the plasma response electron current and number
density respectively. It proves convenient to perform an algebraic
transformation to the speed of light frame ({ = z-ct, T = t). The
transformation should actually be to the laser pulse group velocity frame,
but the differences can be neglected for the present purposes.
Furthermore, a temporal steady state, 3/3t = O, in the laser pulse frame
is assumed. It can be shown that for short laser pulses with aio/Z <« 1,
the plasma quantities remain linear and nonrelativistic. The plasma,
therefore, is assumed to be described by the linear, nonrelativistic, cold
fluid equations. Using this fluid response, B{p and 6np, in the wave

equation, the plasma response fields and density are given by

y)

? 2 2

;‘E + kp E(ryC) = kp Y¢L(rYC)Y (2)
82 2 Ieln 0 o2

— + k &n (r,q) = - ————g— ¢ (r,0), (3)
e plp m L

where k. = w_ /c and V = e 3/9_ + e_93/3L. Note that even in the two-
p po ~ 1 r z

dimensional case the response field, E, is derivable from a scalar

potential and hence, there is no resporse magnetic field.

From (2), the axial wakefield is given by

N

B,(r,0) = k) [ cos k(2 )8 (r,2)d ()
C

From (2) and (3) it can be shown that the transverse wakefield and plasma

density are given by 3E /3( = 3F_/3r and 36np/3( . r(4n|e|)71V2E7.

6
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. As an illustration, consider a laser pulse profile of the form
aL(r,C) = aLosin(nC/QL)exp(—rz/ri) for 0 < C < QL and 0 otherwise. Then

the axial wakefield and response plasma density within the laser pulse,

% 0<C¢« QL’ and behind the pulse, { £ 0, are given by
2
2n°k ¢Lo(r) - .
. _ _—_plo ° : : _ :
E () = S [sxn ko€ (1-2) + h 51n(kchc/h)], (5)
4n -kaL

and

n T n C2 (4 2,22
)

2
&n_(2z) 2 |e] n“é (r) - -
o Lo {Cos k 0 (1-D) - cos[k ch/h)
po n —kPQL ] P P

2

8 2r > 2(. - Vd

77 [1 . ;7—][cos kyC (1-0) - 1 - b [Lob[kchC/h) . 1)]},(6)
pL L

~

wvhere ¢

I
1}

) ~ 2 2 02,2
C/LL, kp = 2n/kp, ¢Lo(r) -(moc /2|e|)aLO exp(-2r /IL) and

where h = kpCL/Zn for 0 <€ <1 and h =1 for £ < 0. The transverse
wvakefield is easily calcuiated from (5) by the relation aEL/BC = aEz/ar.
It can be shown, as is true of PWFA, that there exists a region of length
Xp/& in the laser pulse frame over which the accelerated electrons
experience both an accelerating axial field as well as a focusing radial

field.

The axial wakefield in (5) is maximum when the laser pulse length is

. )
nearly equal to the plasma wavelength, LLE Ap' bor Yl Xp. the maximin ¢
accelerating field is approximately m times larger than the maximum

0
ponderomotive axial field E . = nE - v, /7. Tt can be showvni
Z,max pond,max Lo L
that the maximum accelerating field is fairly insensitive to changes in the %

laser pulse length and/or the ambient plasma density. 1t should be noted

that (5) and (6) also indicate that it is possible to operate the LWFA in a

’ ﬁ




"wakeless" regime (i.e., the plasma response is nonzero only within the

region of the laser pulse) when QL = mxp, vhere m is an integer > 2.

Numerical Results

The results for the plasma response given by (5) and (6) are plotted
. . e _ 2
in Fig. 2 for the parameters CL = Xp = 0.03 cm, al, = 0.31 and

rp = 0.038 cm. The values of ar . and r are those required5 for a

relativistic optical guided beam when « = P/PCr = 1.2. The axial wakefield
is shown by the solid curve and the density wake is shown by the dashed
curve. The maximum accelerating gradient for this example is 2.6 GeV/m.
Recall that the laser pulse extends over the region 00 < € < 1.

In order to further examine the principles of the LWFA, a full scale
simulation was performed using the electromagnetic particle code10 FRIEZR.
FRIEZR is a 2 1/2D, fully relativistic, electromagnetic PIC code for
electrons with a fluid ion background. The simulation is carried out in
the transtormed laboratory frame of ¢ = z-ct. The laser field was modeled
by a fixed external ponderomotive force moving at the speed of light. The
resulting axial wakefield is shown in Fig. 3 for the same parameters as

used in Fig. 2. The results shown in Fig. 3 are in good agreement with

analytic theory.

Discussion
The above analy<is indicates that the LWFA is capable of generating
acceleration gradients on the ordev of a few GeV/m by ptopagating a single,
short pulse, high power laser beam through a plasma. FEquation (5) gives a
. . . ? , -
maximum acceleration gradient of Ema“ = mo(cnalo) /(?Iolt[). In addition,
relativistic optical guiding occurs for sufficiently high radiation povers,

P >P . If the radiation pulse is aptically guided, the acceleration




distance will be limited to the phase detuning length, Lt’ instead of the
much shorter free space Rayleigh length, Ld. This indicates a maximum

single stage energy gain of €= L E

4 2
Enax = zaxp/(er) , where o = P/PCr

Table 1 summarizes these results for a C02, an Nd glass and a KrF laser,

each of 1 psec pulse duration. In each case a« = 1.2 which implies

aio = 0.31 and ry = 0.038 cm for a matched beam propagation in the

relativistic optically guided5 propagation mode.
The present analysis of relativistic optical guiding neglects the

effects of the electron density response on the laser pulse. Such an

a2
Lo

analysis, however, this condition is only marginally satisfied for

11,12

approximation is appropriate when 6np/npo <X /2. For the present

parameters of interest. 1In addition, laser-plasma instabilities such
as the filamentation, self-modulation or Raman scatteiring processes have
not been considered for relativistically guided short pulses. It is
anticipated that by keeping the dimensions of the laser pulse small,

FL ~ T < Xp’ the effects of these instabilities may be minimized. Fou
example, Raman scattering processeslz occur through the development of

plasma waves within the laser pulse. Since the length scale for the

development of plasma waves is Xp, such effects may be suppressed if

(L < Ap' In addition, relativistic filamentationl] is a result of unstable @,
transverse modes with kll > Ap. Again, this instability may be suppressed

in laser pulses with ry o~ Ap. Furhermore, random fluctuations in the

plasma density will result in spreading of the laser spot size. A more ®

self-consistent model of relativistic optical guiding ftor finite pulse
lengths in currently being pursued by the authors.

The LWFA may have advantages over both the PWFA and the PBWA.  Fou

.1
example, in the PWFA, it is necessary to use a high current (tens of kA)
.o . . . . 1 . .
driving electron beam with a long tise time (»> wp ) and a rapid fall time
1
i
9 ®
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-1, 8
<« g .
( »p)

Stable propagation within a plasma of a high current electron
beam which has a pulse length greater than wél may be difficult.
Similarly, in the PBWA, resonant amplification of the plasma wave requires
that the laser beams have long pulse lengths (many plasma periods in
extent). It is likely that propagation of these long pulse beams will be
plagued by the usual laser-plasma instabilities. 1In addition, such
resonant amplification requires fine tuning between the frequency
differences of the two lasers and the plasma frequency.6 This fine tuning,
which is not necessary in the LWFA, may be difficult to achieve in
practice. Although the maximum gradients attainable in the LWFA may be
lower than in the PBWA, the many apparent advantages (i.e., relativistic
optical guiding, stability and simplicity) of using a single, intense,

short pulse laser beam, makes the LWFA an attractive acceleration scheme.
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Table 1

The laser power (P), diffraction length (free space Rayleigh
length, 1d), detuning length (Lt) and sirgle stage energy gain
(SE,EZLI) for three lasers: C02, Nd glass and KrF. The

parameters are chosen to correspond to a relativistic optically

guided beam with P/P__ - 1.2, a’ - 0.31 and r,= 0.038 cm. This
cr Lo L
gives an acceleration gradient of E2 = 2.6 GeV/m for CL = Ap =
0.03 cm.
Laser A um] P{W] Ld[ml Lk[m] £ 1GeV]
13
CO2 10.6 1.9x10 0.045 0.54 1.4
_
Nd-glass | 1.06 | 1.9x10"° | 0.45 | 54 140
|
. 16
KrF 0.26 3.0x10 1.8 860 2200
13
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(GeV/m)

E
v

(z—c:t)/@L
Fig. 2 The axial wakefield {solid curve) and density wake (dashed curve)
for for ¢, = Ap = 0.03 cm, a2 = 0.31 and r, = 0.038 cm. The

L Lo L

laser pulse extends over the region 0 < (z—ct)/CL < 1.

15 )




(z—ct)/&L

The axial wakefield obtained from the particle code FRIEZR for the

Fig. 3

same parameters as in Fig. 2. The laser pulse is modeled by a

fixed ponderomotive force which extends over the region

0 < (z-ct)/( < 1.

16
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